
www.manaraa.com

Dependence Analysis and Architecture Design for Bit-Level Algorithms

Weijia Shang Benjamin W. Wah
Center for Advanced Computer Studies Coordinated Science Laboratory
University of Southwestern Louisiana University of Illinois, Urbana-Champaign

Lafayette, LA 70504 Urbana, IL 61801
sw@cacs.usl.edu wah@manip.crhc.uiuc.edu

Abstract:. In designing application-specific bit-level
architectures and in programming existing bit-level processor
arrays, it is necessary to expand a word-level algorithm into its
bit-level form before dependence analysis can be performed. In
this paper, we consider dependence structures of bit-level
algorithms as functions of three components — dependence
structures of word-level algorithms, dependence structures of the
arithmetic algorithms implementing word-wise operations, and
algorithm expansions. Based on these components, we can
derive dependence structures of bit-level algorithms without
using time consuming general dependence analysis methods. To
illustrate our approach, we derive two dependence structures for
bit-level matrix multiplication and apply a method developed
earlier [5,6,10] to design two bit-level architectures. One of
these architectures is O(p) times faster than the best word-level
architecture, where p is the word length. The speedup we found
here is true in general because a bit in a bit-level architecture
goes to the next processor for processing as soon as it is
available.

1. INTRODUCTION

Bit-level architectures can exploit parallelism at the bit-level
that is often ignored in word-level processor arrays. This is true
because a bit in such a structure does not have to wait for other
bits to finish before propagating to the next processor for
processing. In this paper we study the design of application-
specific bit-level architectures and the programming of existing
bit-level processor arrays.

A general method involves three steps. A word-level
algorithm of the application can first be expanded into a bit-level
algorithm [8]; this is followed by an analysis of the dependence
relations of the bit-level algorithm; finally, based on the bit-level
dependence structure, the algorithm is mapped to a bit-level
processor array.

This paper addresses the dependence analysis of an expanded
bit-level algorithm and proposes a method for deriving the bit-
level dependence structure without using time consuming general
hhhhhhhhhhhhhhhhhhhhh
Research of the first author was supported in part by Louisiana
Education Quality Support Fund under contract number
LEQSF(1991-93)-RD-A-42, and in part by the National Science
Foundation under Grants MIP 91-10940. Research of the second
author was supported by the Joint Services Electronics Program
Contract N00014-90-J-1270.

dependence analysis procedures. We discuss the mapping of
bit-level algorithms and the design of special-purpose bit-level
architectures. We further show that bit-level architectures can be
O(p) times faster than the corresponding word-level structures,
where p is the word length. The solution presented in this paper
is an important step towards systematically programming or
designing bit-level processor arrays.

Many methods have been proposed for deriving dependence
structures of algorithms with nested loops [9]. These methods
generally involve finding all integer solutions of a set of linear
Diophantine equations, followed by a verification to see if the
integer solutions are inside the index set or iteration space of the
algorithm. In an exact analysis, the time complexity of these
methods is exponential with respect to the number of nested
loops (or the algorithm dimension).

The general dependence analysis methods discussed above
can be applied to find bit-level dependence structures. However,
we can substantially reduce the complexity in finding bit-level
dependence structures if we exploit properties of bit-level
algorithm expansions in our dependence analysis. For instance,
we can view a bit-level dependence structure as a function of the
corresponding word-level dependence structure, the dependence
structures of the arithmetic algorithms implementing the word-
wise operations (such as multiplication, division and addition),
and the algorithm expansions. This allows us to derive a bit-
level dependence structure without representing the algorithm at
the bit-level and using general dependence-detection procedures.

The idea presented above is discussed in detail in Section 3.
Basically, our approach is to expand a word-level algorithm
based on its word-level dependence structure and the dependence
structures of the underlying arithmetic algorithms. (Two of these
algorithms are presented in Section 3.) Since many word-level
algorithms involve a limited number of word-level arithmetic
algorithms, the dependence structures of these algorithms need to
be derived only once. For example, word-level algorithms, such
as matrix multiplications, LU decompositions and convolutions,
involve only a limited number of arithmetic algorithms for
multiplication, addition and division (such as add-shift
multiplication and carry-save multiplication).

Once the bit-level dependence structure is known, the next
step is to either design a bit-level architecture based on the
dependence structure, or map the dependence structure to a bit-
level processor array. This can be carried out by an extension of
the design method we have developed earlier [4,5,6,10]. We

www.manaraa.com

illustrate our approach by showing the design of two special-
purpose bit-level architectures for matrix multiplication. One of
the architectures presented is time optimal; that is, it has the
minimum total execution time and is O (p) times faster than the
best word-level architecture, where p is the word length. This
improvement is expected to be true in general for bit-level
architectures, as a bit can propagate to the next processor for
further processing as soon as it is available.

This paper is organized into five sections. After defining
basic terminology in Section 2, we show in Section 3 our bit-
level algorithm dependence analysis. Section 4 shows how to
design bit-level architectures based on the dependence structures
obtained in Section 3. Two bit-level architectures are presented
for matrix multiplication. Section 5 concludes the paper.

2. TERMINOLOGY AND DEFINITIONS

Throughout this paper, sets, matrices and row vectors are
denoted by capital letters; column vectors are represented by
lower-case symbols with an overbar; and scalars are shown as
lower-case letters. The transpose of a vector v

h
is denoted as v

hT
.

Vector 0
h

denotes a row or column vector whose entries are all
zeroes. The dimension of vector 0

h
and whether it denotes a row

or column vector are implied by the context in which it is used.
The rank of matrix A is denoted rank(A). The set of integers is
denoted Z. The notation |C | and | α | represents the cardinality
of set C and the absolute value of scalar α, respectively. Let v

h

and u
h

be two vectors. Then v
h

≥ u
h

means that every component of
v
h

is greater than or equal to the corresponding component of u
h
.

Algorithms considered in this paper are represented by a
special kind of Fortran-like nested Do loops having the following
form.

END

Sq (j
h
)

. . .
S 2(j

h
)

S 1(j
h
)

DO (j 1=l 1 , u 1; j 2=l 2 , u 2; ..., jn=ln , un)

(2.1)

Column vector j
h

= [j 1 , j 2 , ..., jn]T is the index vector (also called
the index point). S 1(j

h
), S 2(j

h
), ..., Sq(j

h
) are q assignment

statements in iteration j
h

having the form xk(g(j
h
)) = f(x 1(h 1(j

h
)),

..., xt(ht(j
h
))), where 1 ≤ k ≤ t, and g(), hi(), i =1, ..., t, are linear

functions of j
h
. The lower and upper bounds of the i th nested

loop, 1 ≤ i ≤ n, are denoted by li and ui , respectively. Algorithms
with n nested Do loops are called n-dimensional algorithms.

In general nested Do loops, cross-iteration dependences may
exist. If iteration j

h
depends on iteration j

h
′, then this dependence

can be described by a pair (j
h
, d

h
), where d

h
= j

h
− j

h
′ is the vector

difference of the index vectors of these two iterations. Vector d
h

is called a dependence vector and is said to be valid at index
point j

h
. Assuming that iteration j

h
depends on iteration j

h
′, there

are three types of dependences [1]. The first type is called flow

dependence (or read-after-write dependence) where an input
variable of the computation in j

h
is an output variable of the

computation in j
h
′. The second is called anti-dependence (or

write-after-read dependence) where an output variable of the
computation in iteration j

h
is an input variable of the computation

in iteration j
h
′. The third is called output dependence (or write-

after-write dependence) where an output variable of the
computation in iteration j

h
is an output of the computation in

iteration j
h
′.

In this paper, we assume that every variable in the program is
written only once during the entire execution of the algorithm;
therefore, there is no output dependence. To illustrate this idea,
consider the following word-level matrix multiplication
algorithm.

Example 2.1iiiiiiiiiii (matrix multiplication). Consider the matrix
multiplication Z=X.Y as follows.

END

z (j 1 , j 2) = z(j 1 , j 2) + x(j 1 , j 3) y(j 3 , j 2)

DO (j 1=1, u ; j 2=1, u ; j 3=1, u)

Variable z(j 1 , j 2), j 1 , j 2 = 1, ..., u, is written more than once
during the execution of the algorithm. This program can be
transformed to the following equivalent one where every variable
is written only once.

END

z (j 1 , j 2 , j 3) = z(j 1 , j 2 , j 3−1) + x(j 1 , j 3) y(j 3 , j 2)

DO (j 1=1, u ; j 2=1, u ; j 3=1, u)

(2.2)

where z(j 1 , j 2 , 0) = 0, j 1 , j 2 =1, ..., u, and the zi, j entry of the
product matrix is z(i, j, u), i, j = 1, ..., u. `

In program (2.2), datum x(j 1 , j 3) is needed as an input by
the n computations at index points [j 1 , 1, j 3]T , [j 1 , 2, j 3]T , ...,
[j 1 , u, j 3]T . In other words, we need to broadcast datum
x(j 1 , j 3) to these n index points if these n computations were to
be executed simultaneously. Usually, broadcasting is not
preferred in VLSI implementations because it incurs additional
area on a chip and longer clock cycles. If we do not allow
broadcasts, then data can be pipelined to those computations that
need the data using the method developed by Fortes and
Moldovan [2]. After eliminating broadcasts, program (2.2) can
be transformed into the following form [2].

END

z(j
h
) = z(j

h
−[0, 0, 1]T) + x(j

h
) y(j

h
)

y(j
h
) = y(j

h
−[1, 0, 0]T)

x(j
h
) = x(j

h
−[0, 1, 0]T)

DO (j 1=1, u ; j 2=1, u ; j 3=1, u)

(2.3)

where x(j
h
) = x(j 1 , j 2 , j 3), y(j

h
) = y(j 1 , j 2 , j 3) and z(j

h
) =

z(j 1 , j 2 , j 3). Intuitively, data x(j 1 , j 3) are pipelined along the
j 2 axis through index points [j 1 , 1, j 3]T , [j 1 , 2, j 3]T , ...,
[j 1 , u, j 3]T . Similarly, y(j 3 , j 2) are pipelined along the j 1 axis.
Initially, x(j 1 , 0, j 3) = x j 1, j 3 and y(0, j 2 , j 3) = y j 3, j 2 . The
dependence structure of the matrix multiplication algorithm in
(2.3) can also be obtained by using Banerjee’s technique [1].

www.manaraa.com

Consider a dependence vector d
h
. If for any two arbitrary

index vectors j
h

1 , j
h

2 ∈ J such that j
h

2 − j
h

1 = d
h

and that dependence
vector d

h
is valid at j

h
2 , then this dependence vector is uniform. If

all dependence vectors are uniform, then the algorithm is a
uniform dependence algorithm. For the purpose of this paper, an
algorithm can be characterized by a triplet (J, D, E) where J is
the index set, D is the dependence matrix containing all distinct
dependence vectors as its columns, and E contains all different
computations in all iterations. For uniform dependence
algorithms, because all dependence vectors are valid at every
index point, it is not needed to specify the points they are valid
at. As an example, the matrix multiplication algorithm in (2.3) is
a uniform dependence algorithm because dependence vectors d

h
1 ,

d
h

2 and d
h

3 are uniform and can be characterized by the triplet A =
(J, D, E) where

J=

I
J
K
J
L

R
J
J
Qj 3

j 2

j 1
H
J
J
P

:1≤ j 1 , j 2 , j 3≤u, j 1 , j 2 , j 3 ∈ Z

M
J
N
J
O

D=
R
J
J
Q0
0
1

0
1
0

1
0
0H
J
J
P

y x z

(2.4)

and

z (j
h
) = z (j

h
−d
h

3) + x(j
h
) y(j

h
)} .

E={x (j
h
) = x (j

h
−d
h

2),y (j
h
) = y (j

h
−d
h

1),

The symbol on the top of each column in D indicates the variable
that causes the dependence. This algorithm in (2.3) is
computationally uniform because all iterations have the same
computation.

3. BIT-LEVEL DEPENDENCE ANALYSIS

This section presents our method for finding dependence
structures of bit-level algorithms. Section 3.1 discusses
dependence structures of arithmetic algorithms for the
multiplication and addition of two integers. Section 3.2 shows
two algorithm expansions for implementing word-wise
operations by bit-wise operations. Finally, we show how to
obtain the bit-level dependence structure directly from word-
level dependence structures, dependence structures of arithmetic
algorithms, and the corresponding algorithm expansion.

3.1. Dependence Structures of Arithmetic Algorithms

Consider the add-shift [3] arithmetic algorithm that
multiplies two nonnegative integers s = a×b, where
s = s 2p −1 s 2p −2 ... s 1 , a = ap ap −1 ... a 1 , and b = bp bp −1 ... b 1 . As is
illustrated in Fig. 1a, the multiplication of two integers s = a×b
can be implemented by adding p integers
(ap/\bi)(ap −1/\bi) ... (a 1/\bi), i =1, ..., p, with the i th integer shifted
i −1 positions to the left.

For instance, in computing point a 2b 2 in Fig. 1a, one partial
sum bit s and one carry bit c are to be produced using input
variables a 2 , b 2 , the carry bit from the east (computing point
a 1b 2), and the partial sum bit from the north (computing point
a 3b 1). The output variables are the carry bit to be sent to the
west (computing point a 3b 2) and the partial sum bit to be sent to

g g g

ggg

g g g

a 3 a 2 a 1

b 1b 2b 3

a 1b 1a 2b 1a 3b 1

a 1b 2a 2b 2a 3b 2

a 1b 3a 2b 3a 3b 3

s 5 s 4 s 3 s 2 s 1

(a) s =a×b implemented by the add-shift algorithm.

a 1b 1a 2b 1a 3b 1

a 1b 2a 2b 2a 3b 2

a 1b 3a 2b 3a 3b 3

s 1

s 2

s 3s 4s 5

(b) The square obtained by reshaping the parallelogram in (a).

123

2

3

i 1

i 2

(c) Dependence structure of the add-shift algorithm.

Figure 1. The add-shift arithmetic algorithm.

×

+

hh

the south (computing point a 1b 3).

If the parallelogram of the data distribution in Fig. 1a is
reshaped to the square shown in Fig. 1b, then the operations
performed are similar except that data are input and output in
different directions. The two algorithms in Fig. 1a and 1b are
equivalent. The general add-shift arithmetic algorithm as
illustrated in Fig. 1b can be described by the following code.

END

s(i
h
)=f(a (i 2)/\b(i 1), c(i 1 ,i 2−1), s(i 1−1,i 2+1))

c (i
h
)=g(a (i 2)/\b(i 1), c(i 1 ,i 2−1), s(i 1−1,i 2+1))

DO (i 1=1,p ; i 2=1,p)

(3.1)

www.manaraa.com

where i
h

= [i 1 , i 2]T , c(i
h

) = c(i 1, i 2) is the carry bit, s(i
h

) =
s(i 1, i 2) is the partial sum bit, and Boolean functions g and f are
defined as follows.

f(x 1 , x 2 , x 3) = x 1 +b x 2 +b x 3 .

g(x 1 , x 2 , x 3) = (x 1/\ x 2) \/ (x 2 /\ x 3) \/ (x 3 /\ x 1)
(3.2)

Then initial values are s(0, i 2) = 0, i 2 = 2, ..., p+1, s(i 1 , p +1) = 0,
i 1 = 1, ..., p −1, and c(i 1 , 0) = 0, i 1 = 1, ..., p. The final results
are si = s(i, 1) for 1 ≤ i ≤ p, and si = s(p, i −p +1) for p < i ≤ 2p −1.

Every variable in program (3.1) is written only once.
Broadcasts exist because variable a(i 2) is needed by index points
[1, i 2]T , ..., [p, i 2]T , and b(i 1) is needed by index points [i 1 , 1]T ,
..., [i 1 , p]T . By applying Fortes and Moldovan’s technique [2]
for eliminating broadcasts, program (3.1) can be transformed into
one without any broadcast as follows.

END

s (i
h

)=f(a (i
h
)/\b(i

h
), c(i

h
−δ
h

2), s(i
h
−δ
h

3))

c (i
h

)=g(a (i
h
)/\b(i

h
), c(i

h
−δ
h

2), s(i
h
−δ
h

3))

b(i
h

)=b(i
h
−δ
h

2)

a(i
h

)=a(i
h
−δ
h

1)

DO (i 1=1, p ; i 2=1, p)

(3.3)

where δ1 = [1,0]T , δ2 = [0,1]T , and δ3 = [1,−1]T .

In iteration i
h
, a(i

h
−δ
h

1) produced in iteration i
h
′ = i

h
−δ
h

1 is input
to produce a(i

h
); hence iteration i

h
depends on iteration i

h
′. This

flow dependence is uniform and is described by the pair (i
h
, δ
h

1),
i
h
∈ J. Similarly, for the statement generating b(i

h
), there is a

uniform dependence described by the pair (i
h
, δ

h
2), i

h
∈ J. For

statements generating c(i
h
) and s(i

h
) in iteration i

h
, variables

c(i
h
−δ
h

2) and s(i
h
−δ
h

3) are needed as inputs, which are generated in
iterations i

h
′ = i

h
−δ
h

2 and i
h
′′ = i

h
−δ
h

3 , respectively. Hence there are
two uniform dependences (i

h
, δ

h
2) and (i

h
, δ

h
3), i

h
∈ J. Since all

dependence vectors are uniform, this algorithm is a uniform
dependence algorithm. In short, there are three distinct
dependence vectors, and the add-shift algorithm in (3.3) is
described by the triplet Aadd −shift = (Jas , Das , Eas) where

Jas = {i
h
: 1 ≤ i 1 , and i 2 ≤ p, i 1 , i 2 ∈ Z} , (3.4)

Das = [δ
h

1 , δ
h

2 , δ
h

3] = R
Q 0
1
a

1
0

b,c

−1
1
s

H
P

Note that δ2 in Das is involved in the computations of both b (i
h
)

and c (i
h
).

Fig. 1c shows the index set and the dependence structure of
the arithmetic algorithm in (3.3) when p =3. As an example,
index point [2, 2]T represents the computation where a 2 , b 2 ,
carry c(2,1) and partial sum s(1, 3) are the four input bits. The
computation is to sum three bits a 2/\b 2 , c(2,1) and s(1,3) to
produce carry bit c(2,2) to be sent to [2, 3]T and partial sum bit
s(2,2) to be sent to [3,1]T . Dependence vector [1,0]T is due to
pipelining a 2 from index point [1, 2]T and dependence vector
[0, 1]T is due to pipelining b 2 from index point [2, 1]T .

Due to space limitation, the dependence structure of an
algorithm for adding two integers is not included here [7].

3.2. Algorithm Expansions and Bit-level Dependences

In this subsection we discuss algorithm expansions, namely,
how to implement word-wise operations by bitwise operations.
We study two expansions with the algorithm model in (2.1)
restricted to the following form.

END

z(j
h
) = z(j

h
− h

h
3) + x(j

h
).y (j

h
)

y(j
h
) = y(j

h
− h

h
2)

x(j
h
) = x(j

h
− h

h
1)

DO (j 1=l 1 , u 1; j 2=l 2 , u 2; ...; jn=ln , un)

(3.5)

The triplet describing this word-level program is (Jw , Dw , Ew)
where

Dw= R
Qh
h

1 , h
h

2 , h
h

3
H
P

x y z

Jw={j
h
:li≤ ji≤ui , ji ∈ Z,i =1, ...,n}. (3.6)

This model can describe applications such as matrix
multiplication, convolution, matrix-vector multiplication, discrete
cosine transform, and discrete Fourier transform. More general
models are under investigation currently.

In each iteration of (3.5), two numbers x(j
h
) and y(j

h
) are

multiplied, and the result added to the number z(j
h
−h
h

3) computed
at index point j

h
−h
h

3 . Consider that each index point in Jw is
replaced by a 2-dimensional index set Jas in Fig. 1c for
multiplying x(j

h
) and y(j

h
). Then each index point [j

hT
, i 1 , i 2]T has

n +2 indexes.

Fig. 2 illustrates two ways to add z(j
h
−h
h

3) to x(j
h
).y(j

h
). Let

x(j
h
) = xpxp −1 ...x 1 , y(j

h
) = ypyp −1 ...y 1 and z(j

h
−h
h

3) =
z 2p −1z 2p −2 ...z 1 . As is shown in Section 3.1, z 2p −1 , z 2p −2 , ..., z 1

are produced at boundary points [(j
h
−h
h

3)T , i 1 , i 2]T where i 1 = p
or i 2 = 1. As is illustrated in Fig. 2a (Expansion II), the 2p−1
bits of z(j

h
−h
h

3) are added to the product x(j
h
).y(j

h
) at boundary

index points in iteration j
h

where i 1 = p or i 2 = 1; i.e., at points
[j
hT

, p, i 2]T , i 2 = 1, ..., p and [j
hT

, i 1 , 1]T , i 1 = 1, ..., p−1. As an
example, at index point [j

hT
, p, 2]T , the bits that need to be

summed are the partial sum bit from [j
hT

, p −1, 3]T , zp +1 , x 2/\yp ,
and the carry bit from index point [j

hT
, p, 1]T .

In reality, we do not have to add z 2p −1 , ..., z 1 of z(j
h
−h
h

3) in
order to produce x(j

h
).y(j

h
) as is shown in Fig. 2a. Instead, as is

illustrated in Fig. 2b (Expansion I), we can add the partial sum
bits z(j

h
−h
h

3 , i 1 , i 2), i 1 , i 2=1, ..., p, of z(j
h
−h
h

3) generated at
[(j
h
−h
h

3)T , i 1 , i 2]T to x(j
h
).y(j

h
) at [j

hT
, i 1 , i 2]T . In other words,

partial sum bit z(j
h
−h
h

3 , i 1 , i 2) is not sent to
[(j
h
−h
h

3)T , i 1+1, i 2−1]T , but is sent to [j
hT

, i 1 , i 2]T instead.

As an example, let p =3 as is shown in Fig. 2b. At index
point [j

hT
, 2, 2]T , three bits, the carry bit from index point

[j
hT

, 2, 1]T , z(j
h
−h
h

3 , 2 ,2) from iteration j
h
−h
h

3 , and x 2/\y 2 are
summed to produce a new partial sum bit z(j

h
, 2,2) to be sent to

www.manaraa.com

z(2,3) z(2,2) z(2,1)

z(1,3)

z(3,3) z(3,2) z(3,1)

z(1,2) z(1,1)

i 2

i 1

i 1

i 2

i 1

i 2

i 1

i 2

z 5 z 4
z 3

z 2

z 1

iteration j
h
−h
h

3

iteration j
h
−h
h

3

iteration j
h

iteration j
h

(a) Expansion II: add z 5 ..., z 1 at southern and eastern boundaries.

Figure 2: Two ways to add z (j−h 3) to product x (j).y (j).

(b) Expansion I: add partial sum bits of z(j −h 3).

hhh

index point [(j
h
+h
h

3)T , 2,2]T , and a new carry bit c(j
h
,2,2) to be

sent to index point [j
hT

, 2,3]T .

In short, each of the two ways described above for adding
z(j

h
−h
h

3) to x(j
h
).y(j

h
) corresponds to an algorithm expansion for

implementing word-wise operations by bit-wise operations. To
get more insight on the dependence structures of expanded bit-
level algorithms, consider the following simple 1-dimensional
algorithm.

END

z(j) = z(j − h 3) + x(j) . y (j)

y(j) = y(j − h 2)

x(j) = x(j − h 1)
DO (j=l, u)

(3.7)

Since this is 1-dimensional, j, h 1 , h 2 , and h 3 are scalars instead
of vectors. The index set and the dependence structure of this 1-
dimensional word-level algorithm in shown in Fig. 3a. Without

loss of generality, we assume that h 1 = h 2 = h 3 .

Fig. 3b shows the dependence structure where the p 2 partial
sum bits of z(j−h 3) are added to the corresponding partial sum
bits of x(j).y(j) (corresponding to Expansion II in Fig. 2b). Fig.
3c shows the dependence structure of the bit-level algorithm
where the 2p −1 final sum bits of z(j−h 3) are added to x(j).y(j)
at boundary index points where i 1 = p or i 2 = 1 (corresponding to
Expansion I in Fig. 2a).

In Fig. 3b, each index point in Fig. 3a is replaced by the 2-
dimensional index set for the multiplication of two integers in
Fig. 1c. Hence, each index point in Fig. 3b has three indexes j,
i 1 , and i 2 . The p bits of x(j) are pipelined along the j axis at
index points where i 1 = 1. In other words, the dependence
caused by pipelining xk , the k th bit of x(j), is valid only at index
points where i 1 = 1 and i 2 = k and is, therefore, not uniform. All
bits of x(j) are also pipelined along axis i 1 in order to compute
x(j).y(j). The dependence caused by pipelining along direction j
is described by the pair ([j, 1, i 2]T , d

h
1 = [h 1 , 0, 0]T), where

l ≤ j ≤ u, and 1 ≤ i 2 ≤ p. On the other hand, the dependence
caused by pipelining along direction i 1 can be described by the
pair ([j, i 1 , i 2]T , d

h
4) where i 1 ≠ 1 and d

h
4 = [0, 1, 0]T (i.e.,

dependence vector δ
h

1 in (3.4) is prefixed by a zero corresponding
to the j axis). Dependence vector d

h
4 is not uniform and is valid

only at index points where i 1≠1.

Similarly, the p bits of y(j) are pipelined along axis j at
index points where i 2 = 1, and the dependence caused by
pipelining yk , the k th bit of y(j), is valid only at boundary index
points where i 1 = k and i 2 = 1. This dependence is, therefore,
not uniform. All bits of y(j) are also pipelined along axis i 2 in
order to compute x(j).y(j). The dependence caused by
pipelining along direction j is described by the pair ([j, i 1, 1]T ,
d
h

2 = [h 2 , 0, 0]T), where l ≤ j ≤ u, and 1 ≤ i 1 ≤ p. The
dependence caused by pipelining along direction i 2 can be
described the pair ([j, i 1 , i 2]T , d

h
5), where i 2 ≠ 1 and d

h
5 =

[0, 0, 1]T (i.e., δ
h

2 in (3.4) is prefixed by a zero corresponding to
axis j). Dependence vector d

h
5 is not uniform and is valid only at

points where i 2 ≠ 1.

Variable z(j−h 3) causes a flow dependence because it is to
be added to x(j).y(j) after it is generated. In Fig. 3b, because the
p 2 partial sum bits z(j−h 3 , i 1 , i 2), i 1 , i 2=1, ... p, of z(j−h 3)
produced at index points [j−h 3 , i 1 , i 2]T , i 1 , i 2=1, ..., p, are sent
to index points [j, i 1 , i 2]T , i 1 , i 2=1, ..., p, respectively, the flow
dependence is described by the pair (q

h
, d
h

3) where q
h

= [j, i 1 , i 2]T ,
i 1 , i 2 = 1, ..., p, j = l, ..., u, and d

h
3 = [h 3 , 0, 0]T . This

dependence is uniform. At index points where j=u, all partial
sum bits have to be added. Partial sum bit z(u, i 1 , i 2) generated
at index point [u, i 1 , i 2]T will be sent to index points
[u, i 1+1, i 2−1]T instead of index point [j+h 3 , i 1 , i 2]T as is in the
cases when j ≠ u. This flow dependence can be described by the
pair ([u, i 1 , i 2]T , d

h
6 = [0, 1, −1]T) (where d

h
6 is obtained from δ

h
3

in (3.4) by prefixing it by a zero corresponding to j axis). This
dependence is not uniform and is valid only when j = u.

Carry bit c flows in parallel along with the i 2 axis. The
corresponding dependence vector d

h
5 = [0, 0,1]T is not uniform

www.manaraa.com

g

g

g
g

g
g

g

g
g

g
g

g

g
g

g

g
g

g

g
g

g

g

g
g

g

g
g

..................................

..................................

..................................

..................................

..................................

..................................

..................................

..................................

..................................

...........................
.............................

...

...

(b) Dependence structure using expansion I.

g g g

j

i 1
y 2

y 3

i 2

u
j

c’

g

g

g
g

g
g

g

g
g

g
g

g

g
g

g

g
g

g

g
g

g

g

g
g

g
g

g

..................................

..................................

..................................

..................................

..................................

..................................

..................................

..................................

..................................

...

...

...........................
.............................

(c) Dependence structure using expansion II.

y 2

y 3

z 1

z 2

z 3

z 4

z 5

ji 2

i 1

g g g

(a)

l u
j

h 1=h 2=h 3

Index set and dependence structure of program (3.7).

g g g

y 1

y 1x 1

x 2

x 3

x 1

x 2

x 3

Figure 3. In (b) and (c) , x is pipelined along solid lines; y is
pipelined along dotted lines and z flows along dashed lines.

hhh

and is not valid at index points where i 2 = 1 because at these
points, carry c is zero and is not added. Therefore, the pair
describing the dependence caused by c is ([j, i 1 , i 2]T , d

h
5), i 2 ≠ 1,

which is the same as the one describing pipelining y(j) along the
i 2 axis.

In Fig. 3b, three bits are summed at some index points. In
these cases, one carry bit and one partial sum bit have to be
generated. At other index points, more than three bits have to be
summed; hence, we need to generate at least two carry bits and
one partial sum bit. For example, at index point [u, 2, 2]T , we
need to sum at least four bits: x 2/\y 2 , two partial sum bits
z(u−1,2, 2) and z(u, 1, 3), and carry bit c (u, 2, 1). Three output
bits should be generated: the partial sum bit z(u, 2, 2) to be sent
to index point [u, 3, 1]T , and two carry bits c (u, 2, 2) to be sent to
index point [u, 2, 3]T and c ′(u, 2, 2) to be sent to index point
[u, 2, 4]T (if p = 3, this carry goes out of the index set and is not
useful; however, if p>3, this carry is useful). If four of these
input bits are one, carry c ′ will be one. If two and not more than
three are ones, then carry c will be one. The dependence vector
corresponding to the second carry c ′ is d

h
7 = [0, 0, 2]T , which is

valid at index points where j = u and i 2 ≠ 1,2, or j = u and i 1 ≠ 1.

In Fig. 3c (corresponding to Expansion I in Fig. 2a), all the
dependence vectors can be obtained in a similar way. The two
bit-level dependence structures in Fig. 3b and 3c have the same
index set. Let J, DI , and DII be the index set, the dependence

matrix for Fig. 3b, and the dependence matrix for Fig. 3c,
respectively. Then

J = {[j, i 1 , i 2]T : l ≤ j ≤ u, 1 ≤ i 1 , i 2 ≤ p, j, i 1 , i 2 ∈ Z}

DI = R
Qd
h

1 , d
h

2 , d
h

3 , d
h

4 , d
h

5 , d
h

6 , d
h

7
H
P (3.8)

=
R
J
J
Q

i 1=1

0
0

h 1

x

i 2=1

0
0

h 2

y

q
h
0
0

h 3

z

i 1≠1

0
1

0
x

i 2≠1

1
0

0
y,c

j =u

−1
1

0
z

q
h

1

2
0

0
c′

H
J
J
P

DII = R
Qd
h

1 , d
h

2 , d
h

3 , d
h

4 , d
h

5 , d
h

6 , d
h

7
H
P (3.9)

=
R
J
J
Q

i 1=1

0
0

h 1

x

i 2=1

0
0

h 2

y

q
h

2

0
0

h 3

z

i 1≠1

0
1

0
x

i 2≠1

1
0

0
y,c

q
h

−1
1

0
z

i 1≠p

2
0

0
c′

H
J
J
P

where q
h

1=[u, i 1 , i 2]T , i 1≠1 or i 2≠1,2, q
h

2 = [j, i 1 , i 2]T , i 1 = p, or
i 2 = 1, and q

h
is an arbitrary index point in J. The information at

the bottom indicates those index points where the corresponding
dependence vector is valid at. For example, d

h
1 is valid only at

points where i 1 =1 as is indicated by ‘‘i 1 = 1’’ at the bottom of
d
h

1 . Vector d
h

3 is uniform in Expansion I and d
h

6 is uniform in
Expansion II.

We now extend the above analysis on 1-dimensional
algorithms to n-dimensional algorithms in (3.5). Let

q
h
=

R
J
Q i
hj
h H
J
P
where j

h
=[j 1 , ..., jn]T and i

h
=[i 1 , i 2]T , (3.10)

and d
h

1=[h
h

1
T
, 0, 0]T , d

h
2=[h

h
2
T
, 0, 0]T , d

h
3=[h

h
3
T
, 0, 0]T , d

h
4 =

[0
h
, δ
h

1
T]T , d

h
5=[0

h
, δ
h

2
T]T , d

h
6=[0

h
, δ
h

3
T]T , and d

h
7 = [0

h
, 0, 2]T where

h
h

1 , h
h

2 and h
h

3 are as defined in (3.5) and δ
h

1 , δ
h

2 and δ
h

3 are as
defined in (3.4). Also let Das and Dw be as defined in (3.4) and
(3.6), respectively. Let J and DI and DII be the index set and
dependence matrices of Expansions I and II described in Fig. 3b
and 3c, respectively. Then the following theorem describes how
DI , DII and J are related to the word-level dependence structure,
the arithmetic algorithm, and algorithm expansions.

Theorem 3.1:

J =
I
K
L
q
h

=
R
J
Q i
hj
h H
J
P
: j
h

∈ Jw , i
h

∈ Jas

M
N
O
, (3.11a)

DI =
R
J
J
Q
0

Dw

Das

0

δ
h

4

0
h H

J
J
P

= R
Qd
h

1 d
h

2 d
h

3 d
h

4 d
h

5 d
h

6 d
h

7
H
P (3.11b)

=
R
J
Q

i 1=1

0
h

h
h

1

x

i 2=1

0
h

h
h

2

y

q
h
0
h

h
h

3

z

i 1≠1

δ
h

1

0
h
x

i 2≠1

δ
h

2

0
h

y,c

jn=un

δ
h

3

0
h
z

q
h

1

2
0

0
h
c′

H
J
P

www.manaraa.com

DII =
R
J
J
Q
0

Dw

Das

0

δ
h

4

0
h H

J
J
P

= R
Qd
h

1 d
h

2 d
h

3 d
h

4 d
h

5 d
h

6 d
h

7
H
P (3.11c)

=
R
J
Q

i 1=1

0
h

h
h

1

x

i 2=1

0
h

h
h

2

y

q
h

2

0
h

h
h

3

z

i 1≠1

δ
h

1

0
h
x

i 2≠1

δ
h

2

0
h

y,c

q
h
δ
h

3

0
h
z

i 1=p

2
0

0
h
c′

H
J
J
P

where q
h

1 is defined such that (i 1≠1 or i 2≠1,2) and jn=un , q
h

2 is
defined such that i 1=p or i 2=1, q

h
is an arbitrary point in J, δ

h
4 =

[0, 2]T , and 0 is a matrix with proper dimension and has all zero
entries.

Proof. The proof is omitted due to space limitation [7]. `

Example 3.1.iiiiiiiiiiii Consider the matrix multiplication in (2.3). Its
dependence matrix and index set at the word-level is shown in
(2.4). According to Theorem 3.1, the dependence matrix and
index set of the corresponding bit-level matrix multiplication
algorithm derived by Expansion II (Fig. 3c) are as follows.

D =

R
J
J
J
J
Q

i 1=1

0
0
0
0
1
y

i 2=1

0
0
0
1
0
x

i 2=1
or

i 1=p

0
0
1
0
0
z

i 1≠1

0
1
0
0
0
x

i 2≠1

1
0
0
0
0

y,c

q
h

−1
1
0
0
0
z

i 1=p

2
0
0
0
0
c′

H
J
J
J
J
P

(3.12)

J={[j 1 , j 2 , j 3 ,i 1 ,i 2]T ∈ Z 5:1≤ j 1 , j 2 , j 3≤u, 1≤i 1 ,i 2≤p} (3.13)

Expansion II is slower than Expansion I because, as is
indicated in Fig 3c, the computation at j

h
has to wait for the final

results at j
h
−h
h

3 . In Expansion I, partial sum bits in j
h
−h
h

3 are sent
to j

h
and takes less time. Further, Expansion I is more

computationally uniform because at all points, except when j = u
in Fig 3b, at most three bits are to be summed; in contrast, in
Expansion II, four or five bits have to be summed on the
hyperplane i 1 = p (the southern boundary points in the 2-
dimensional index set of the add-shift operation). This may
cause unbalanced load distribution. More discussions on
algorithm expansion can be found in the reference [7].

4. DESIGN OF BIT-LEVEL ARCHITECTURES

Based on the dependence structures presented in Section 3,
we discuss in this section the design of bit-level architectures.
After summarizing in Section 4.1 a design method we have
developed earlier [5,6], we show in Section 4.2 the application of
the design method to design two bit-level architectures for matrix
multiplication.

4.1. Design Method

Definition 4.1 (Linear algorithm transformation): A linear
algorithm transformation maps an n-dimensional algorithm
(J, D, E) into a (k −1)-dimensional processor array according to
the mapping:

τ: J→Z k , τ(j
h
) = Tj

h
, −\/j

h
∈ J

where T= R
Q Π

S H
P ∈ Z k×n is the mapping matrix, S ∈ Z (k −1)×n is the

space mapping matrix, and Π ∈ Z 1×n is the time mapping vector
or linear schedule vector. The computation indexed by j

h
∈ J is

executed at time Π j
h

and at processor Sj
h
. The mapping τ must

satisfy the following conditions:

(1) Π D > 0
h
.

(2) SD = PK where P ∈ Z (k −1)×r is the matrix of interconnection
primitives of the target machine, and K ∈ Z r×m is such that

j =1
Σ
r

k ji ≤ Π d
h

i , i =1, ..., m. (4.1)

(3) −\/j
h

1 , j
h

2 ∈ J, if j
h

1 ≠ j
h

2 , then τ(j
h

1) ≠ τ(j
h

2), or Tj
h

1 ≠ Tj
h

2 .

(4) The rank of T is equal to k, or rank (T) = k.

(5) The entries of T are relatively prime.

Condition 1 in Definition 4.1 preserves the partial ordering
induced by the dependence vectors. If this condition is satisfied,
then the computation indexed by j

h
∈ J is scheduled to execute

only after the computations indexed by j
h
−d
h

i ∈ J, i = 1, ..., m. In
this case Π D > 0

h
and the dependence relation is, therefore,

satisfied.

The matrix of interconnection primitives P describes the
connection links of processors in the processor array. For an
array with each processor connected to its four nearest eastern,
southern, western and northern neighbors, it has four
interconnection primitives [0, 1]T , [0, −1]T , [1, 0]T and [−1, 0]T

and matrix P =
R
J
Q1
0

−1
0

0
1

0
−1H

J
P
. Condition 2 in Definition 4.1

guarantees that the space mapping can be implemented in a
systolic architecture with interconnection primitive matrix P.
The summation on the left hand side of inequality (4.1) is the
number of times that the interconnection primitives have been
used to pass a datum according to dependence vector d

h
i from its

source to its destination. The item on the right is the time units
between the source usage and the destination usage of that
datum. Assuming that it takes one time unit for a datum to travel
one interconnection primitive, then the inequality must be
satisfied in order to have the datum arrive before it is used.

Condition 3 defines the condition for avoiding computational
conflicts. If the condition were not true, that is, τ(j

h
1) = τ(j

h
2),

then the computations indexed by j
h

1 and j
h

2 are mapped to the
same processor at the same time, and a conflict occurs.
Condition 4 guarantees that the algorithm is to be mapped into a
(k −1)-dimensional array but not a q-dimensional array, where
q < k −1. When rank (T) = q +1 < k, there are exactly q +1
linearly independent rows in T, and all other rows of T are linear

www.manaraa.com

y11
1 y21

1 y31
1

y11
2 y21

2 y31
2

y11
3 y21

3 y31
3

y12
1 y22

1 y32
1

y12
2 y22

2 y32
2

y12
3 y22

3 y32
3

y11
1 y21

1 y31
1

y11
2 y21

2 y31
2

y11
3 y21

3 y31
3

x11
1

x12
1

x13
1

x11
2

x12
2

x13
2

x11
3

x12
3

x13
3

x21
1

x22
1

x23
1

x21
2

x22
2

x23
2

x21
3

x22
3

x23
3

x31
1

x32
1

x33
1

x31
2

x32
2

x33
2

x31
3

x32
3

x33
3

Figure 4. A bit-level processor array for matrix multiplication
with p =n =3 corresponding to T in (4.2).

l 1

l 2

hhh

combinations of these q +1 linearly independent rows. Let T ′ be
the matrix consisting of these q +1 linearly independent rows. T
can now be transformed by a linear transformation to T ′ , which
means that the algorithm is actually mapped into a q-dimensional
processor array. Condition 5 is used to guarantee that at any time
during the execution, at least one processor is busy. For detailed
description of the mapping model and optimization method,
please see the references [5,6].

4.2. Bit-Level Architectures for the Matrix Multiplication

In this subsection, based on the dependence structure
obtained by Expansion II, two bit-level architectures for matrix
multiplication are presented. The dependence matrix and index
set of the bit-level matrix multiplication by Expansion II are
shown in (3.12) and (3.13), respectively

Theorem 4.5: The following mapping matrix

T = R
Q Π

S H
P =

R
J
J
Q 1
0
p

1
p

0

1
0
0

2
0
1

1
1
0 H
J
J
P

(4.2)

is both feasible and time optimal.

Proof: The proof is omitted due to space limitation [7]. `

As is discussed in the reference [7], one feasible matrix of
interconnection primitives and the corresponding K matrix are

P =
R
J
Q 0
p

p

0

0
0

0
1

1
0

−1
1 H

J
P
, K =

R
J
J
J
J
J
J
Q 0
0
0
0
0
1

0
0
0
0
1
0

0
0
0
1
0
0

0
0
1
0
0
0

0
1
0
0
0
0

1
0
0
0
0
0

0
2
0
0
0
0 H
J
J
J
J
J
J
P

(4.3)

The architecture described by mapping matrix T in (4.2) is
shown in Fig. 4, where P and K are used and p = u = 3. The
timing and connections are specified completely by

TD =

R
J
J
J
J
Q
1
0
p

y

1
p

0
x

1
0
0
z

2
0
1
x

1
1
0

y,c

1
−1
1
z

2
2
0
c ′H

J
J
J
J
P

(4.4)

In Fig. 4, item xij
k (yij

k) represents the k th bit of xij (yij), Data xij

flow from top to bottom and yij flow from right to left. Data zij

are stationary and the final results are stored at the eastern and
southern boundary points of each small block. There is a buffer
on the interconnection primitive [1, 0]T because Sd

h
4 = [1, 0]T and

t =1
Σ
6

kt 4 = 1 < Πd
h

4 = 2. Note that interconnection primitives [p, 0]T

and [0, p]T require long wiring with distance p.

The total execution time required by mapping matrix T in
(4.2) is [6]

t = max{ Π(q
h

1−q
h

2): q
h

1 , q
h

2 ∈ J} + 1 (4.5)

= [1, 1, 1, 2, 1] ([u,u,u,p,p]T − [1,1,1,1,1]T) + 1

= 3(u −1) + 3(p −1) + 1 .

The total number of processors required is

s= | { l
h
: Sq

h
= l
h
, q
h

∈ J} | = u 2p 2 .

Consider another mapping matrix

T ′ = R
QΠ′
S H

P =
R
J
J
Q p

0
p

p

p

0

1
0
0

2
0
1

1
1
0 H

J
J
P

. (4.6)

Let

P ′ =
R
J
Q 0
1

1
0

−1
1

0
0 H
J
P

and K ′ =

R
J
J
J
J
Q
0
0
0
p

0
0
p

0

0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0 H
J
J
J
J
P

. (4.7)

Then, SD = P ′K ′ and Π′d
h

i ≥
t =1
Σ
4

k′ ti, i = 1, ..., 7. It can be shown

similarly that T ′ is feasible; the corresponding architecture is
shown in Fig. 5. The total execution time in this case is

t ′ = max{ Π′ (q
h

1−q
h

2): q
h

1 , q
h

2 ∈ J} + 1 (4.8)

= [p, p, 1, 2, 1]([u,u,u,p,p]T−[1,1,1,1,1]T) + 1

www.manaraa.com

y11
1 y21

1 y31
1

y11
2 y21

2 y31
2

y11
3 y21

3 y31
3

y12
1 y22

1 y32
1

g
g
g

x11
1

x12
1

x13
1

x11
2

x12
2

x13
2

x11
3

x12
3

x13
3

x21
1

x22
1

x23
1

x21
2

x22
2

x23
2

ggg

l 2

l 1

Figure 5. A bit-level architecture for matrix multiplication
described by (4.6).

hhh

= (2p−1)(u −1) + 3(p −1) + 1

and the total number of processors is (u.p)2 .

The main disadvantage of the design in Fig. 5 is that its total
execution time is longer than that in Fig. 4. In this case, data xij

and yij are pipelined at one speed instead of two different speeds
as is shown in Fig. 4. However, long wires are not needed in Fig.
5, whereas in Fig. 4, long wires are used to pipeline xij and yij at
different speeds.

We can compare the time optimal bit-level architecture in
Fig. 4 with the best word-level architecture for matrix
multiplication described in the literature [4]. The total execution
time of the best word-level architecture for matrix multiplication
with index set J = {[j 1 , j 2 , j 3]T : 1 ≤ ji ≤ u, ji ∈ Z, i = 1,2,3} is
(3(u−1)+1).tb , where tb is the time for multiplying two integers
and adding two integers. Suppose the add-shift arithmetic
algorithm is used to multiply two integers, then the multiplication
time is O(p 2), and the total time for word-level matrix
multiplication is O(p 2).(3(u−1)+1). If this number is compared
with the total execution time in (4.5), then the speedup of our
bit-level architecture over the word-level architecture described
above is O(p 2) if u > p is assumed. Intuitively, a bit-level
architecture is faster because, unlike in word-level architectures,
a bit does not have to wait for all other bits to finish before going
to next computation. In practice, faster arithmetic algorithms
such as carry-save multiplication with complexity tb = O(p) can
be used to multiply two integers. In this case the speedup of our
bit-level architecture is O(p).

5. CONCLUSIONS

In this paper, we propose to express the dependence structure
of a bit-level algorithm as a function of its corresponding word-
level dependence structure, the dependence structure of the
arithmetic algorithm, and its algorithm expansion. Bit-level
dependence structures can be obtained automatically from the
above three parameters without using time consuming general
dependence analysis methods. Based on the bit-level dependence
structure, we illustrate the the design of two bit-level
architectures for matrix multiplication. Our design shows that an
optimal bit-level architecture can be O (p) times faster than the
corresponding word-level architecture, where p is the number of
bits.

6. ACKNOWLEDGEMENTS

The authors would like to thank the students in the CMPS
639 course at USL for their helpful discussions. The authors are
also indebted to L. Xu for suggesting the space mapping matrix S
in (4.2), and to Z. Chen for drawing all the figures.

7. REFERENCES

[1] U. Banerjee. Dependence Analysis for Supercomputing,
Kluwer Academic, 1988.

[2] J. A. B Fortes and D. I. Moldovan, "Data Broadcasting in
Linearly Scheduled Array Processors," Proc. 11th Annual
Symp. on Computer Architecture, 1984, pp. 133-149.

[3] K. Hwang, Computer Arithmetic: Principles, Architecture,
and Design, John Wiley, New York, 1979.

[4] G.-J. Li and B. W. Wah, "The Design of Optimal Systolic
Arrays," IEEE Trans. Computers, Vol. C-34, Jan. 1985, pp.
66-77.

[5] Z. Yang, W. Shang and J. A. B. Fortes, ‘‘Conflict-Free
Scheduling of Nested Loop Algorithms on Lower
Dimensional Processor Arrays,’’ Proc. 6th IEEE Int’l
Parallel Processing Symposium, March 1992, Beverly Hills,
CA, pp. 156-164.

[6] W. Shang and J. A. B. Fortes, ‘‘On Mapping of Uniform
Dependence Algorithms into Lower Dimensional Processor
Arrays,’’ IEEE Trans. on Parallel and Distributed Systems,
Vol. 3, No. 3, May 1992, pp. 350-363.

[7] W. Shang and B. W. Wah, Dependence Analysis and
Architecture Design for Bit-Level Algorithms, Technical
Report 93-3-1, The Center for Advanced Computer Studies,
Univ. of SW Louisiana, Lafayette, LA 70504, April, 1993.

[8] V. E. Taylor and J. A. B. Fortes, "Using RAB to Map
Algorithms into Bit-level Systolic Arrays," Proc. of Int’l
Conf. on Supercomputing, May 1987.

[9] Z. Xing and W. Shang, Polynomial and Exact Data
Dependence Analysis, Technical Report 92-3-5, The Center
for Advanced Computer Studies, Univ. of SW Louisiana,
Lafayette, LA 70504, Dec., 1992.

[10] K. Ganapathy and B. W. Wah, "Synthesizing Optimal
Lower Dimensional Processor Arrays," Proc. Int’l Conf. on
Parallel Processing, Aug. 1992, pp. 96-103.

